最有看点的互联网金融门户

最有看点的互联网金融门户
国际资讯

毕马威:2018年数字银行挑战和机遇并存

国际资讯

毕马威:2018年数字银行挑战和机遇并存

你的客户正在改变,你的竞争对手在改变,技术同样也是如此......那么银行是如何驾驭这些变化的呢?

这是银行业迫切需要解决的问题,改变不再是"如果?"而是"什么时候"的问题。客户期望快速变化,新的非传统竞争对手灵活运作,本已水流湍急的市场愈加复杂,所有传统银行都受到了金融危机的连锁规则和技术挑战的冲击。

机遇在敲门

不过,机遇也通常存在。能够找到正确创新点的传统银行将会把这些颠覆之处与其传统优势相匹配,从而保护高价值业务部门并建立长期竞争优势。KPMG一份最新报告表明,企业需要更具适应性的策略,要坚持对核心业务领域数字化颠覆之处进行持续评估,去接受非传统伙伴关系,方能成功。

报告概述了指导银行高管人员建立前瞻性战略的七个关键领域。下面是其中五个:

1.人口统计学

千禧一代(16-35岁)已经取代婴儿潮出生的一代人(52-70岁)成为人口统计学的主体。 更重要的是,千禧一代已经成为消费者偏好的监测基准,而 X一代(36-51)和婴儿潮一代则可能同时受到千禧一代顾客期望的回声效应(Echo Effect)的影响。

因此,银行应该使用净推荐值(NPS)、快速客户调查等工具揭示不断变化的预期以及"测试和学习"概念验证。

2.竞争

过去三年,金融服务行业新竞争对手出现的速度、数量和种类猛增。敏感的金融科技公司是第一波,在下一波浪潮中将会出现规模更大的非传统参与公司(亚马逊、沃尔玛、PayPal等)。 同时,很多金融科技公司正在寻求与银行建立合作伙伴关系,这是加速金融科技类能力的绝佳机会,可以应用于银行的客户群体,提升客户体验。

所以,银行应该积极培养创新文化,培养不断追踪和评估新型数字颠覆的能力,接受更快实现目标的合作伙伴关系。

3.技术和数据

社交媒体和手机等技术平台已经解锁了丰富的新数据资源,激发了客户洞察力。但大多数数据都是非结构化的,也就是说,并不适合标准的分析模型。而且大部分数据中不在固定的场所,意味着数据仓库和数据池不能作为有效的数据来源,因此不能够用于收集洞察并解决业务挑战。

因此,银行应该确定有用的新数据源(主要是外部和非结构化数据源),并确保技术和商业智能团队能够无缝整合数据,使可行的后续步骤具象化, 接受可加速模式识别的合作伙伴。

4.数字劳动力

劳动力成本在银行的运营费用比例越来越大,智慧算法正在推进过程自动化,提升劳动力效率。

所以,银行应该跟上人工智能(AI)能力提升速度,推动呼叫中心、合规性和安全性等领域的自动化,接受非传统合作伙伴。

5.支付基础设施

高速发展且日趋复杂的技术带来了迟来已久的进步,支付速度大大加快,也更加便利,而在大多数国家支付功能早已过时,远远落后于时代。

要为成功而谋划。构建获取所需技术投资回报的商业案例,接入更快捷的支付方式,探索业务功能中利用增量收入产生用例的机遇。

从根本上讲,银行业的数字颠覆将意味着有赢有输。赢家将拥有一个崭新而灵活的战略愿景,吸收先进分析和新技术,收获不断变化的创新回报。

Your customers are changing. Your competitors are changing. And your technology … well, that’s getting more complex by the day. But how is your bank navigating all of that change?

That’s the urgent question for the banking industry, and the idea of change is no longer a matter of “if?” but “when?” The whitewater is further churned by rapidly changing customer expectations and nimble new nontraditional competitors—all while traditional banks have been hamstrung by the knock-on regulations of the financial crisis and legacy technology challenges.

Opportunity knocks

But disruption breeds opportunity and we believe many of the challenges of the past are old news as innovative patterns have emerged that can change the game. Traditional banks that successfully identify the right innovations for their banks will be positioned to match those disrupters with their traditional strengths, protecting high-value business segments and building a long-term competitive edge. Success will require a more adaptable strategy, guided by an ongoing assessment of digital disruption in core business areas and an openness to nontraditional partnerships, as outlined in a new report from KPMG.

The report outlines seven key areas to guide senior bank executives toward a powerful go-forward strategy. Five are outlined below. Access Setting Course in a Disrupted Marketplace for full analysis on all seven key areas.

Demographics

What to know: Millennials (ages 16-35) have displaced Baby Boomers (52-70) as the largest demographic. More important, Millennials have emerged as the benchmark for consumer preferences, with both Gen-X (36-51) and Boomers adopting Millennial customer expectations through the echo effect.

What to do: Update customer insights with tools like the Net Promoter Score (NPS), rapid customer surveys to expose changing expectations and ‘test and learn’ proof of concepts.

Competition

What to know: The speed, volume and variety of new competitors in financial services have skyrocketed in the last 3 years. Nimble financial technology companies were the first wave, but prepare for bigger nontraditional players (Amazon, Walmart, PayPal, et al) in the next wave.  At the same time, many fintechs are seeking bank partnerships and these are great opportunities to accelerate fintech-like capabilities that can be applied to bank’s customer base to drive enhanced experiences.

What to do: Foster a culture of innovation and a capability that constantly tracks and evaluates new digital disrupters—and remain open to get-there-faster partnerships.

Tech and data

What to know: Technology platforms like social media and mobile have unlocked rich new data sources with tantalizing customer insights. But the data is mostly unstructured, meaning it doesn’t fit standard analytics models.  Much of this data also sits outside your four walls, meaning your data warehouse and lake builds aren’t always effective sources of data to glean insights from and to solve business challenges.

What to do: Identify useful new data sources (mostly external and unstructured) and ensure technology and business intelligence teams seamlessly integrate that data to sharpen actionable next steps.  Be open to partnerships that can accelerate pattern recognition.

Digital labor

What to know: Ever-smarter algorithms are advancing process automation and workforce efficiency at a time when labor costs are taking a larger bite from banks’ operating expenses.

What to do: Stay on top of the increasing capabilities of artificial intelligence (AI) to drive more automation in areas like call centers, compliance and security and be open to non-traditional partnerships.

Payments infrastructure

What to know: The speed and complexity of technology is driving a long-overdue push to improve the speed and ease of payments— historically slow and outdated in most countries.

What to do: Plan for success. Build the business case for the investment return on the technologies required to tap into faster payments and explore opportunities for incremental revenue generating use cases across your business functions.

Ultimately, digital disruption in banking will mean winners and losers. The winners will have a crisp yet flexible strategic vision, an appetite for advanced analytics and new technologies, and a stomach for volatile returns on innovation.


用微信扫描可以分享至好友和朋友圈

扫描二维码或搜索微信号“iweiyangx”
关注未央网官方微信公众号,获取互联网金融领域前沿资讯。

发表评论

发表评论

您的评论提交后会进行审核,审核通过的留言会展示在下方留言区域,请耐心等待。

评论

您的个人信息不会被公开,请放心填写! 标记为的是必填项

取消

栀航 | 未央团队未央编辑团队

16
总文章数

TA还没写个人介绍。。。

阻止赌博成瘾,Starling Bank有新招

高旭 | FINEXTRA 06-13

桑坦德计划在英推出中小企业专属数字银行

Samantha H... | CROWDFUND ... 05-15

澳大利亚首家数字银行Volt正式成立

高旭 | FINEXTRA 05-10

巴西数字银行Neon获BBVA投资

高旭 05-06

英国数字银行Revolut获2.5亿美元C轮融资,估值17亿美元

Steve O'He... 04-27

版权所有 © 清华大学五道口金融学院互联网金融实验室 | 京ICP备17044750号-1