专注金融科技与创新

专注金融科技与创新
其他国际资讯

谷歌首席决策科学家:AI难免犯错,唯有人类可以悬崖勒马

其他国际资讯

谷歌首席决策科学家:AI难免犯错,唯有人类可以悬崖勒马

过去五年里,Cassie Kozyrkov在谷歌担任过各种各样的技术职务,而如今她的角色是谷歌“首席决策科学家”。决策科学是一个数据和行为科学的交叉学科,涉及统计学、机器学习、心理学、经济学等。或许通过Kozyrkov和谷歌的努力,能让人们相信人工智能并不像许多人宣称的那么糟糕。

焦虑

“机器人正在偷走我们的工作”,“人工智能是人类生存的最大威胁”,类似的言论已不绝如耳,尤其在过去几年里,这种担忧变得更加明显。

人工智能对话助手渗入我们的家中,汽车和卡车自动驾驶似乎指日可待,机器可以在电脑游戏中打败人类,甚至创意艺术也不能幸免于人工智能的冲击。另一方面,我们也被告知枯燥重复的工作可能会成为过去。人们对自己在自动化世界中的未来感到焦虑和困惑,这是可以理解的。但是根据Kozyrkov的说法,人工智能只是人类努力方向的延伸。

对人工智能潜在恐惧的原因是我们觉得它可以做得比人类更好,但这种担心并不成立。Kozyrkov认为,“我们所有的工具都比人类好——这就是工具的意义所在。如果没有工具你可以做得更好,为什么要使用工具呢?如果你担心电脑的认知能力比你强,那我要提醒你,你的笔和纸在记忆方面比你强。我的水桶比我更擅长装水,我的计算器比我更擅长把六位数相乘。人工智能在某些方面也会变是如此。”

当然,许多人对人工智能和自动化的潜在恐惧并不是说它会比人类更擅长做事。对许多人来说,真正的危险在于,任何恶意实体可以肆无忌惮地对我们的一举一动进行跟踪和微观管理。

偏见

研究人员已经证明了人脸识别系统中固有的偏见,比如亚马逊的Rekognition就会犯这样的错误。此前,美国民主党总统候选人参议员Elizabeth Warren就曾呼吁联邦机构解决算法偏见的问题,比如美联储如何处理货币贷款歧视。

旧金山最近宣称,它将使用人工智能来减少对犯罪嫌疑人的偏见,例如,自动修改警方报告中的某些信息。但总体来看,人们对人工智能如何真正减少人类现有偏见的关注少之又少。

在招聘领域,Fetcher正着手帮助企业利用人工智能寻找人才。该公司声称,人工智能还有助于将人类偏见降到最低。Fetcher通过在线渠道自动寻找潜在候选人,并使用关键字来确定个人可能拥有的技能,而这些技能并没有列在个人资料中。该公司将其平台宣传为消除招聘偏见的一种简单方法,因为如果你训练一个系统遵循一套严格的标准,只关注技能和经验,性别、种族或年龄等因素将不会被考虑在内。

但对人工智能系统性歧视的担忧,是许多人工智能领域的首要议题。微软敦促美国政府监管面部识别系统,研究人员正致力于在不影响预测结果准确性的前提下,减少人工智能中的偏见。

人为因素

最重要的是,人工智能还处于相对起步阶段,我们仍在研究如何解决算法偏见等问题。但Kozyrkov表示,人工智能所显示的偏见与现有的人类偏见是一样的,毕竟对于用来训练机器的数据集与用于教育人类的教科书来说,其原理都是一样的。

当然,在现实世界中,受人尊敬的同行评审的期刊或教科书应该有足够的监督来对抗任何明显的偏见——但如果作者、他们的数据源以及鼓励学生阅读教科书的老师都有同样的偏见呢?任何陷阱可能要到很久以后才会被发现,到那时想要阻止任何不良影响就太晚了。

因此,Kozyrkov夫认为,“视角的多样性”对于确保偏见最小化是必不可少的。她表示:“你对数据的关注越多,你就越有可能发现那些潜在的不良案例。所以在人工智能中,多样性是必须拥有的。你确实需要从不同的角度来看待和思考如何使用这些例子来影响世界。”

测试

与学生考试的现实世界类似,在部署人工智能算法和机器学习模型之前测试它们,是为了确保它们能够执行设定的任务。

人类学生如果被问到他们事先学习过的问题,他们可能在考试中表现得非常好,但这可能是因为他们有很好的记忆力,而不是对手头的科目有一个完整的理解。为了测试更广泛的理解能力,需要给学生一些问题,让他们能够应用所学知识。

机器学习是在同样的前提下运行的——存在一种被称为“过度拟合”的建模错误,在这种错误中,一个特定的函数与训练数据过于紧密地对齐,可能会出现误报。“电脑的记忆力真的很好,” Kozyrkov说,“所以你真正测试他们的方法是给他们一些真实的新东西,他们不可能记住的。如果成功了,那就是真的成功了。”

Kozyrkov将安全有效的人工智能的四项原则与教授人类学生的四项基本原则进行了比较,基本是类似的:

  1. 明智的教学目标
  2. 相关和多样化的观点
  3. 精心制作的测试
  4. 安全网

不过,即使是最精心设计、初衷最好的人工智能系统也可能失败或犯错——事实上,系统越好,在某些方面就越危险,就像人类学生一样。

“即使你的学生真的很好,他们也可能犯错误,” Kozyrkov说,“事实上,在某些方面,差学生比好生更危险,因为有了差生,你已经习惯了他们犯错误,所以你已经有了安全网。但是对于好学生,如果你从来没有见过他们犯错误,你可能会认为他们从来没有犯过错误。这可能只会让你花费更长的时间,然后就是灾难性的失败。”

这种“安全网”可以采取多种形式,但它往往涉及建立一个单独的系统,而不是“过分信任你的好学生,” Kozyrkov说。

所有这一切都指向一个可能对许多人来说显而易见但或许值得重复的观点:人工智能是其创造者的反映。因此,我们需要集中精力实现系统和检查,以确保那些构建机器的人(“教师”)是负责任的。

围绕“机器教学”的重要性,人们达成了越来越多的共识。微软等公司最近表示,人工智能的下一个前沿领域将是利用人类专业人士的专业技能来训练机器学习系统,而不管专家是否具备人工智能知识或编程能力。

Kozyrkov指出,“如今我们必须把重点放在机器教学上,而不仅仅是机器学习了。不要让科幻小说的花言巧语分散你对人类责任的注意力,从一开始就关注参与其中的人类。从领导者设定的目标,到工程师编写、分析师和决策者核查的数据集,再到统计学家进行的测试,再到可靠性工程师构建的安全网,所有这些都包含了很多人为因素。”

[Source]

用微信扫描可以分享至好友和朋友圈

扫描二维码或搜索微信号“iweiyangx”
关注未央网官方微信公众号,获取互联网金融领域前沿资讯。

发表评论

发表评论

您的评论提交后会进行审核,审核通过的留言会展示在下方留言区域,请耐心等待。

评论

您的个人信息不会被公开,请放心填写! 标记为的是必填项

取消

李开复:AI 开花结果到了最好时期

李静 08-17

雇佣印度码农冒充AI,这家获软银青睐的明星创企造假曝光!

Nick Statt 08-16

剑桥大学携手世界经济论坛开展人工智能与金融技术研究

JD Alois 08-15

NatWest银行推出智能语音查询功能

Finextra | FINEXTRA 08-13

英国政府斥资2.5亿英镑推动人工智能建设

高旭 | MEDICLA SI... 08-12

版权所有 © 清华大学五道口金融学院互联网金融实验室 | 京ICP备17044750号-1